SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 3

SOLUTIONS

Problem 2. Let S_{1} and S_{2} be level sets of functions $F_{1}, F_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ at regular values, respectively. Show that $S_{1} \cap S_{2}$ is the level set of a function F (you have to find it), and use this function to show that if for every $x \in S_{1} \cap S_{2}$, $\operatorname{ker} d F_{1}(x) \neq \operatorname{ker} d F_{2}(x)$, then $S_{1} \cap S_{2}$ is a 1-manifold.
Solution. Let $y_{1}, y_{2} \in \mathbb{R}$ denote the regular values of F_{1} and F_{2}, respectively, such that $S_{i}=F_{i}^{-1}\left(y_{i}\right)$. Define $F(x)=\left(F_{1}(x), F_{2}(x)\right)$, so that F is a function from \mathbb{R}^{3} to \mathbb{R}. We claim that the point $y=\left(y_{1}, y_{2}\right)$ is a regular value of F. Indeed, observe that $S_{1} \cap S_{2}=F_{1}^{-1}\left(y_{1}\right) \cap F_{2}^{-1}\left(y_{2}\right)=F^{-1}(y)$. Furthermore, note that by assumption $\operatorname{ker} d F_{1}(x) \neq \operatorname{ker} d F_{2}(x)$, and both are hyperplanes for every $x \in S_{1} \cap S_{2}$ since y_{1} and y_{2} are regular values of F_{1} and F_{2} respectively. We may therefore choose for every $x \in S_{1} \cap S_{2}, v \in \operatorname{ker} d F_{1}(x)$ such that $d F_{2}(x) v \neq 0$. Hence $d F(x) v$ is a nonzero multiple of e_{2}. Similary, we may find a vector w such that $d F(x) w$ is a nonzero multiple of e_{1}. This implies that $d F(x)$ is onto for every $x \in F^{-1}(y)$ and y is a regular value. By the regular value theorem, $S_{1} \cap S_{2}=F^{-1}(y)$ is a 1-manifold.

Problem 3. Let $S(x, r)$ denote the sphere of radius r based a a point $x \in \mathbb{R}^{3}$, and $C(v, r)$ denote the cylinder centered at the line through 0 in the unit vector v of radius r :

$$
C(v, r)=\left\{y \in \mathbb{R}^{3}:\left\|\pi_{v}(y)\right\|=r\right\}
$$

where $\pi_{v}: \mathbb{R}^{3} \rightarrow\langle v\rangle^{\perp}$ is the orthogonal projection onto the orthogonal complement of v.
(a) Find functions $F_{v, r}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $G_{x, r}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $C(v, r)$ and $S(x, r)$ are levels sets of F and G respectively.
(b) For which points, vectors and radii are the sphere and cylinder $S\left(x, r_{1}\right)$ and $C\left(v, r_{2}\right)$ transverse? For which are they nontrivially transverse?
Solution. For (a), let $G_{x, r}(y)=|x-y|^{2}-r^{2}$, so that $S(x, r)$ is $G_{x, r}^{-1}(0)$ and $F_{v, r}(y)=\left|\pi_{v}(y)\right|^{2}-r^{2}$,so that $C(v, r)$ is $F_{v, r}^{-1}(0)$. Overse that

$$
G_{x, r}(y)=\left(\sum_{i} x_{i}^{2}-2 x_{i} y_{i}+y_{i}^{2}\right)-r^{2} \quad F_{v, r}(y)=\sum_{i} y_{i}^{2}-(\langle v, y\rangle)^{2}-r^{2}
$$

For (b), observe that the intersection is transverse if and only if $0 \in \mathbb{R}^{2}$ is a regular value of $H(y)=\left(G_{x, r}(y), F_{v, r}(y)\right)$. We compute:

$$
d H(y)=\binom{d G_{x, r_{1}}(y)}{d F_{v, r_{2}}(y)}=\left(\begin{array}{ccc}
-2 x_{1}+2 y_{1} & -2 x_{2}+2 y_{2} & -2 x_{3}+2 y_{3} \\
2 y_{1}-2 v_{1}\langle v, y\rangle & 2 y_{2}-2 v_{2}\langle v, y\rangle & 2 y_{3}-2 v_{3}\langle v, y\rangle
\end{array}\right)
$$

To verify that the matrix $d H(y)$ is onto, we must check that the rows are nonzero and nonproportional for all $y \in H^{-1}(0,0)$. The first row is zero if and only if $x_{i}=y_{i}$ for every i. In this case, $G_{x, r_{1}}(y)=-r_{1}^{2}$, and since we assume $G_{x, r_{1}}=0, r_{1}=0$. Thus, we must have $r_{1}>0$. The second row is all zeros if and only if $y_{i}=v_{i}\langle v, y\rangle$ for all i. Since v is a unit vector, by squaring and summing this equality this occurs if and only if y_{i} is proportional to v by the Cauchy-Schwartz
inequality. If y is proportional to v, then $\pi_{y}(v)=0$, and again we conclude that $r_{2}=0$. Thus we must have $r_{2}>0$.

Finally, we check when the rows are linearly independent. Notice that they are scalar multiples if and only if for every $i, y_{i}-x_{i}=\lambda\left(y_{i}-v_{i}\langle v, y\rangle\right)$. If we square and sum each of these terms, we see that $|y-x|=|\lambda| \cdot|y-v\langle v, y\rangle|$. Since we are requiring the we lie in the intersection, $|y-x|=r_{1}$ and $|y-v\langle v, y\rangle|=r_{2}$. Hence $|\lambda|=r_{1} / r_{2}$. So we get transversality unless $r_{2}(y-x)= \pm r_{1}(y-v\langle v, y\rangle)=$ $\pm r_{1} \pi_{v}(y)$ as vectors.

Thus, we lack transversality exactly when $y-x$ and $\pi_{v}(y)$ are proportional. Now, we write $y=c v+r_{2} w$ for some $c \in \mathbb{R}$ and w perpindicular to v. Then since $y-x$ differs in the same direction w with magnitude r_{1}, it follows that we lack transversality exactly when

$$
x=c v+r_{2} w \pm r_{1} w=c v+\left(r_{2} \pm r_{1}\right) w .
$$

Equivalently, when $\left|\pi_{v}(x)\right|=\left|r_{1} \pm r_{2}\right|$. Finally, observe that the intersection is nontrivial if and only if $\left|\pi_{v}(x)\right|<r_{2}$ and $\left|\pi_{v}(x)\right|+r_{1}>r_{2}$ or $\left|\pi_{v}(x)\right| \geq r_{2}$ and $\left|\pi_{v}(x)\right|-r_{1}<r_{2}$.

Problem 4. Let $M \subset \mathbb{R}^{3}$ be a compact surface and $E \subset \mathbb{R}^{3}$ be a plane passing through 0 . Show that there exists a plane $E+v$ parallel to E such that $M \cap(E+v)$ is a nonempty union of circles. [Hint: If you want to apply Sard's theorem, make sure you read the fine print (ie, pay attention to the difference between a regular value and a non-trivial regular value). The conclusion fails when M is not compact!]

Proof. Let w be a vector perpindicular to E and $p_{w}(x)=\langle x, w\rangle$, so that p_{w} is the projection onto \mathbb{R} whose level sets are planes perpindicular to w (ie, sets of the form $E+v$ for some E). Notice that $M \cap(E+v)$ exactly a level set of $\left.p_{w}\right|_{M}$. Thus, it suffices to show that $\left.p_{w}\right|_{M}$ has at least one nontrivial regular value, since any compact 1-manifold is a union of circles. Because $\left.p_{w}\right|_{M}$ is a continuous function, by the intermediate value theorem, the image is either a singleton or closed interval since M is compact. When the image is a closed interval, there exists at least one nontrivial regular value by Sard's Theorem.

Thus, we must show that the image of $\left.p_{w}\right|_{M}$ cannot be a singleton. Notice that if the image was a singleton, then M would be contained in a single preimage, which is a plane. Thus, M is an embedded 2-manifold in a plane. Thus, M is an open submanifold of \mathbb{R}^{2}. Since M is compact, this is a contradiction to connectedness and non-compactness of \mathbb{R}^{2}.

